
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RETRAINING-FREE MERGING OF SPARSE MIXTURE-
OF-EXPERTS VIA HIERARCHICAL CLUSTERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparse Mixture-of-Experts (SMoE) models represent a significant breakthrough in
large language model development. These models enable performance improve-
ments without a proportional increase in inference costs. By selectively activating
a small set of parameters during task execution, SMoEs enhance model capacity.
However, their deployment remains challenging due to the substantial memory
footprint required to accommodate the growing number of experts. This constraint
renders them less feasible in environments with limited hardware resources. To
address this challenge, we propose Hierarchical Clustering for Sparsely activated
Mixture of Experts (HC-SMoE), a task-agnostic expert merging framework that
reduces SMoE model parameters without retraining. Unlike previous methods,
HC-SMoE employs hierarchical clustering based on expert outputs. This approach
ensures that the merging process remains unaffected by routing decisions. The
output-based clustering strategy captures functional similarities between experts,
offering an adaptable solution for models with numerous experts. We validate our
approach through extensive experiments on eight zero-shot language tasks and
demonstrate its effectiveness in large-scale SMoE models such as Qwen and Mix-
tral. Our comprehensive results demonstrate that HC-SMoE consistently achieves
strong performance, which highlights its potential for real-world deployment.

1 INTRODUCTION

The exponential growth in model parameters for Transformer-based architectures in natural lan-
guage processing (NLP) has led to significant performance improvements across various tasks
(Chowdhery et al., 2022; OpenAI et al., 2024; Team et al., 2024). Nevertheless, this increase in
size has resulted in challenges for real-world deployment and accessibility due to heightened infer-
ence latency and computational requirements (Bommasani et al., 2022) Sparsely activated Mixture
of Experts (SMoE) models have emerged as a promising solution to this challenge. SMoE archi-
tectures employ a sparse activation mechanism, wherein only a subset of the model’s parameters,
or ‘experts’, are activated for each input token. This design enables extensive parametric capacity
without a proportional increase in computational cost during inference, as shown in previous works
(Shazeer et al., 2017; Fedus et al., 2022). However, despite improvements in inference latency, the
overall size of SMoE architectures poses a significant challenge for memory usage, and the efficient
reduction of SMoE model size during inference has become a critical area of concern. Recently,
the authors in Liu et al. (2023) have identified high representational similarity among experts and
suggested a solution to enhance expert diversity within an SMoE. Such an observation is further sub-
stantiated by the empirical results provided in Lu et al. (2024). The collective evidence from these
previous studies therefore suggests that model parameters in contemporary SMoE architectures may
be redundant, which points to avenues for potential optimization and efficiency improvements.

To address the challenges associated with redundant parameters in SMoE models, researchers have
proposed various approaches in the past few years. Early endeavors focused on task-specific expert
pruning (Chen et al., 2022), which progressively eliminates non-essential experts and ultimately
results in a single-expert dense model tailored for a specific downstream task. However, such
approaches often necessitate extensive fine-tuning to mitigate performance degradation caused by
pruning. Inspired by this limitation, several studies (Lu et al., 2024; He et al., 2024) have explored
retraining-free expert pruning methods. For instance, Lu et al. (2024) proposed directly trimming
experts by using the smallest output loss relative to the original model as an indicator of importance,
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without any fine-tuning. On the other hand, He et al. (2024) introduced a more scalable pruning
process based on routing scores. The other line of studies (Li et al., 2024) suggested replacing
pruning approaches with a merging method to more effectively leverage shared knowledge among
experts and consolidate information from the most significant ones. Nonetheless, according to our
experimental investigation in 4, this method exhibits inferior generalizability in task-agnostic setups.

Figure 1: A comparison of the average
accuracy across eight LM-Harness bench-
marks on Qwen1.5-MoE-A2.7B-Chat (Team,
2024). HC-SMoE (Ours) outperforms exist-
ing retraining-free pruning and merging base-
lines, achieving superior results while remov-
ing 25%, 37.5%, and 50% of SMoE expert pa-
rameters.

In light of the aforementioned challenges, this
paper proposes a retraining-free, scalable, and
task-agnostic framework, termed Hierarchical
Clustering for Sparsely Activated Mixture of
Experts (HC-SMoE), that concentrates on reduc-
ing the parameters of an SMoE model through
hierarchical clustering based on expert outputs
and frequency-weighted merging. The hierarchi-
cal clustering methodology offers two key advan-
tages. First, instead of using the grouping approach
adopted in Li et al. (2024), which only calculates
the similarity among the experts once, hierarchi-
cal clustering can better maintain inter-cluster di-
versity and intra-cluster similarity by iterative com-
parison. Second, in contrast to the similarity met-
ric used in Li et al. (2024), HC-SMoE leverages
experts’ outputs rather than router logits, enhanc-
ing generalizability against dataset-specific infor-
mation. This observation is supported by the exper-
imental results presented in Section 4. To evaluate
our design in a task-agnostic experimental setup,
we first perform clustering and merging based on
the C4 dataset (Raffel et al., 2020), and then assess
accuracy across eight zero-shot language tasks (Lu
et al., 2024). As shown in Fig. 1, our method achieves performance comparable to the original
model (i.e., Qwen) and outperforms the best-performing baseline by 6.95% and 2.14% under the 8B
and 11B parameters setups, respectively. Moreover, our results in Section 4 further demonstrate that
HC-SMoE outperforms all baselines with the Mixtral 8x7B setup. Our contributions are fourfold:

• To the best of our knowledge, this study presents the first retraining-free, task-agnostic
SMoE merging strategy that scales efficiently with the number of experts.

• We demonstrate the effectiveness of using expert outputs as the similarity metric for clus-
tering, as compared to router logits or weights employed by prior arts.

• We highlight the importance of clustering quality prior to merging and illustrate that the
proposed hierarchical clustering provides robust and reliable results for expert grouping.

• Our experimental results reveal that HC-SMoE consistently exhibits superior performance
across various benchmarks and demonstrates its efficacy on large-scale SMoE models.

2 BACKGROUND AND RELATED WORKS

This section presents the essential background and related works. Section 2.1 introduces the SMoE
architecture, while Section 2.2 discusses various pruning and merging methods based on SMoE.

2.1 SPARSELY ACTIVATED MIXTURE-OF-EXPERTS (SMOE)

The SMoE model comprises multiple SMoE layers, each of which contains a set of expert neu-
ral networks and a router network. Consider an input token x, a set of expert neural net-
works {E1, E2, ..., En}, and a router network R. The output y of an SMoE layer is com-
puted as a weighted sum of the expert network outputs, which can be expressed as Eq. (1):

y =

n∑
i=1

Pi(x) · Ei(x), (1) E(x) = (σ(xWgate)⊙ (xWup))Wdown, (2)
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Table 1: A Comparison of different approaches for reducing the number of experts in SMoE. Please
note that F-prune is detailed in Section 4.

Method Retraining-free Task-agnostic Scalable Strategy

TSEP (Chen et al., 2022) ✗ ✗ ✓ Pruning
O-prune (Lu et al., 2024) ✓ ✓ ✗ Pruning
S-prune (He et al., 2024) ✓ ✓ ✓ Pruning
F-prune ✓ ✓ ✓ Pruning

M-SMoE (Li et al., 2024) ✗ ✗ ✓ Merging
HC-SMoE (Ours) ✓ ✓ ✓ Merging

where Pi(x) represents the routing score from R for the ith expert, and Ei(x) denotes the out-
put of the ith expert network. Building upon this formulation, the experts in both Qwen (Team,
2024) and Mixtral (Jiang et al., 2024) adopt the structure of LLaMA (Touvron et al., 2023).
Specifically, the feed-forward network (FFN) within each expert consists of three linear layers that
function as Eq. (2), where ⊙ signifies element-wise multiplication, Wup,Wgate ∈ Rdh×dm , and
Wdown ∈ Rdm×dh denote the weight matrices, and σ is the activation function, specifically Sigmoid
Linear Unit (SiLU, also known as the swish function) (Elfwing et al., 2018). In practice, an efficient
implementation of the routing function utilizes a top-k routing strategy (Shazeer et al., 2017; Fedus
et al., 2022), which selects only the top k experts based on the highest logits from a linear transfor-
mation of the input. The softmax operation is then applied to the k largest logits, which result in a
sparse activation of experts. This procedure reduces the computational overhead by activating only
a small subset of the available experts. Mathematically, this procedure can be expressed as follows:

P (x) = softmax(topK(R(x))) = softmax(topK(xWR)), (3)
where R(x) represents the routing-logits and WR denote a learnable parameter matrix. Such a
sparsely activated MoE stucture leverage this mechanism to scale efficiently while maintaining its
performance. By focusing computation on the most relevant experts for each input token, the SMoE
model is able to achieve a balance between the computational efficiency and the task performance.

2.2 EXPERT PRUNING AND MERGING

This section discusses prior methods for reducing the number of experts in an SMoE. Table 1 offers a
summary of them. We begin with the pruning strategies, and then examines the merging techniques.

Pruning strategies for SMoE models have been the focus of several recent studies. Chen et al. (2022)
introduced Task-Specific Expert Pruning (TSEP), which iteratively fine-tunes the model while prun-
ing experts to gradually reduce the number of active experts for a specific downstream task. Despite
its effectiveness, the extensive fine-tuning required renders this process time-consuming and com-
putationally expensive, limiting its practicality for large-scale models. Lu et al. (2024) proposed
a method which we refer to as O-prune in this study, which directly prunes experts using a com-
binatorial search to minimize the Output loss in a retraining-free, task-agnostic, zero-shot setting.
This approach begins by identifying the number of experts to retain in each layer. It then conducts
a layer-wise search across all possible expert combinations, selecting the one that minimizes out-
put loss compared to the original model. Nevertheless, this method directly prunes experts deemed
unimportant, forfeiting the opportunity to leverage their knowledge. Furthermore, the exhaustive
combinatorial search becomes computationally infeasible for models with a large number of experts.
For instance, reducing 50% of the experts in a model like Qwen, which has 60 experts, necessitates
enumerating approximately C(60, 30) ≈ 1018 combinations per layer, rendering it impractical for
large-scale applications. He et al. (2024) introduced an efficient expert trimming technique, denoted
as S-prune, due to its reliance on the router Score. In this approach, each expert’s router-score P (x)
is accumulated globally, and only the top-scoring experts are retained, while others are pruned. This
strategy offers more flexibility than that in Lu et al. (2024), as it enables different layers to retain
varying numbers of experts.

Model merging techniques have emerged as a promising approach to combine the strengths of mul-
tiple models. ZipIt (Stoica et al., 2024) introduces a model merging technique that allows models
with the same architecture but trained on different tasks to be merged without retraining. It uti-
lizes pairwise feature correlation to merge features both within a single model and across different
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Figure 2: (a) The general SMoE architecture. (b) Illustration of the proposed hierarchical clustering
strategy based on expert outputs. (c) Comparison of expert pruning and expert merging strategies.

models, offering flexibility in choosing correlated features. Since expert merging can be considered
a multi-model merging problem, we extend ZipIt to this context. However, its extensive feature
correlation computation makes it time-consuming and less effective for expert merging scenarios.
M-SMoE (Li et al., 2024) proposes a three-step pipeline for expert merging in SMoE models. It
first selects dominant experts based on activation frequency to decide which experts to retain in each
layer, then uses router logits R(x) to group experts, followed by frequency-based merging. How-
ever, in task-agnostic settings without retraining, relying on frequency information for clustering
proves ineffective. This approach faces two main issues. First, frequency varies across tasks, as
shown in Appendix C, making it an unreliable indicator for deciding how many experts to retain in
each layer. Second, high-frequency experts within the same layer are rarely merged, overlooking
their functional similarities in the feature space. Additionally, grouping based on router information
is problematic, as it depends on dataset-dependent statistics. Together, the limitations can potentially
hinder the model’s ability to maintain performance over diverse tasks without access to task data.

3 METHODOLOGY

In this section, we introduce the proposed HC-SMoE. Section 3.1 first provides a formal problem
definition. Section 3.2 then outlines the merging pipeline. Sections 3.2.1, 3.2.2, and 3.2.3 further
explains the similarity metric, clustering method, and merging criterion of HC-SMoE, respectively.

3.1 PROBLEM DEFINITION

In this study, we address the challenge of reducing the space complexity of an SMoE model through
a process termed expert merging. This process consolidates existing experts in an SMoE layer into a
smaller set while preserving the model’s performance. Each SMoE layer initially contains n experts,
as defined in Section 2.1. We aim to merge these experts into r clusters, where r represents the target
number of experts after merging. For the i-th cluster, denoted as Ci = {Ei

0, E
i
1, . . . , E

i
|Ci|}, |Ci|

represents the number of original experts assigned to this cluster. During merging, all experts within
a cluster combine into a single new expert, which effectively reduces the total number of experts to r.
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The distribution of original experts across all clusters satisfies
∑r

i=1 |Ci| = n, which ensures that all
original experts are accounted for in the merging process. To achieve this objective, we explore two
grouping strategies. Static grouping maintains exactly r experts in each layer after merging, while
dynamic grouping allows this number to vary per layer while maintaining an average of r. Our
proposed HC-SMoE adopts static grouping, similar to O-prune, while F-prune and S-prune employ
dynamic grouping. Throughout this process, the router network R remains unchanged. If an input
token was previously assigned to any expert within a merged group, it is routed to the corresponding
merged expert. This approach preserves input dimensionality while reducing the number of experts.

The expert merging problem presents several unique challenges. Unlike conventional model merg-
ing methodologies, where the entities to be merged are predetermined, expert merging requires an
initial clustering of experts into groups before the merging process can be executed. This additional
clustering step substantially increases the complexity of the problem, as it necessitates determining
which subsets of experts can be grouped in a manner that minimizes performance loss in the model.
Since training an MoE model demands substantial GPU memory, we address this problem without
retraining and utilize a non-benchmark dataset to collect information for the expert merging process.

3.2 HIERARCHICAL CLUSTERING FOR SPARSELY ACTIVATED MIXTURE OF EXPERTS

In this section, we elaborate on HC-SMoE, a methodology designed with the philosophy of being
retraining-free, task-agnostic, and scalable. HC-SMoE employs a two-stage pipeline comprising
clustering and merging, which are illustrated in Fig. 2 (b) and the right-hand side of Fig. 2 (c),
respectively. The first clustering stage determines the optimal grouping of experts for subsequent
merging. Our approach demonstrates that utilizing averaged expert outputs as the similarity metric
for clustering yields superior effectiveness compared to methods relying on averaged router logits
or weights. Furthermore, we emphasize the critical importance of clustering quality and illustrate
that hierarchical clustering with average linkage produces robust model quality post-merging. The
second stage encompasses the merging of experts within each identified cluster. Our experimen-
tal findings indicate that given effective clustering, the choice of merging method (e.g., average,
frequency, or alternative merging approaches) consistently results in strong performance across all
benchmarks. The above components are further explained in Subsections 3.2.1, 3.2.2, and 3.2.3.

3.2.1 AVERAGED EXPERT OUTPUTS AS SIMILARITY METRIC

Establishing a robust and reliable expert similarity metric is crucial for HC-SMoE prior to per-
forming clustering. HC-SMoE employs an average output strategy, which proves advantageous due
to its effectiveness in capturing expert functionality. The method utilizes averaged expert outputs
1
T

∑T
i=1 E(xi) over a calibration dataset with T tokens to effectively capture each expert’s func-

tional behavior. The expert feature vectors represent the final transformed data, encapsulating both
the input’s contextual information and the expert’s learned transformations. We evaluated multi-
ple similarity metrics for comparing expert behavior, including router logits R(x) (Li et al., 2024)
and expert weights, represented as flatten(Wgate||Wdown||Wup), where || denotes concatenation. Our
empirical study, detailed in Section 4.3, demonstrates that expert outputs provide a more effective
similarity metric. The following analysis discusses the benefits of expert outputs over these metrics.

Router logits reflect assignment preferences influenced by local factors such as specific input distri-
butions rather than the actual functional similarity between experts. The routing patterns can vary
significantly across tasks and thus limit their utility as task-agnostic similarity metrics. Although
expert weights contain rich parameter information, their processing is computationally expensive.
Furthermore, a prior study (Liu et al., 2023) has shown that SMoE experts often exhibit high similar-
ity in the parameter space, which reduces their effectiveness as a distinct measure of expert function-
ality. In contrast, averaged expert outputs provide a direct representation of each expert’s functional
behavior and improve the identification of functionally similar experts. Previous research (Li et al.,
2016; Stoica et al., 2024) indicates that models with similar outputs are likely to perform analogous
functions. This correlation validates the efficacy of clustering based on output similarity to preserve
model performance after merging and offers the foundation for HC-SMoE’s output merging strategy.
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3.2.2 HIERARCHICAL CLUSTERING

With a reliable expert similarity metric established, the subsequent step involves selecting an appro-
priate clustering method. Unlike conventional model merging, which combines predefined element
groups, expert merging necessitates a more flexible approach to group experts before merging. Al-
though several potential strategies exist, as discussed in Section 4.3, our analysis reveals that hier-
archical clustering (Patel et al., 2015), as illustrated in Fig. 2 (b), is well-suited for this task. This
method exhibits optimal characteristics for expert grouping. Hierarchical clustering initiates by
considering each expert as an individual entity and progressively merges them based on their cluster
distance. This process facilitates adaptive grouping throughout the procedure. The approach contin-
uously recalculates distances between clusters, which ensures the grouping of functionally similar
experts. As a result, hierarchical clustering is able to outperform the K-means and one-shot group-
ing (Li et al., 2024). Section 4.3 provides an ablation study for different clustering strategies. In this
study, Euclidean distance is employed to measure the distance between two experts, expressed as:

d(ei, ej) = ||ei − ej ||2 (4)
where ei and ej denote the metric values for computing distances between experts i and j. Our in-
vestigation includes three linkage methods in hierarchical clustering: single, complete, and average.

single: min
a∈A,b∈B

d(a, b) (5)

complete: max
a∈A,b∈B

d(a, b) (6)

average:
1

|A| · |B|
∑
a∈A

∑
b∈B

d(a, b) (7)

where A and B represent clusters, and a and b denote experts that belong to these clusters. Single
linkage defines cluster distances through the closest pair of elements, while complete linkage uses
the maximum distance and often produces overly compact clusters that miss subtle similarities.
Average linkage considers the mean pairwise distance between cluster elements and achieves an
optimal balance. As demonstrated in Table 4, both single and average linkage produce satisfactory
results, but average linkage achieves consistently superior performance. As a result, the proposed
HC-SMoE adopts the average linkage method by default to ensure high intra-cluster similarity and
low inter-cluster similarity. This balance effectively preserves expert characteristics during merging.

3.2.3 EXPERT MERGING

Upon completion of clustering, HC-SMoE proceeds to merge the experts within each cluster, as
illustrated in Fig. 2 (c). Our empirical evidence indicates that while the choice of merging method
does influence the overall performance, its impact is relatively modest compared to the significance
of clustering results. Specifically, HC-SMoE merges the clustered experts on the weight space as:

Êi =

|Ci|∑
j=1

αjEj ,

|Ci|∑
j=1

αj = 1 (8)

where parameter αj denotes weight of merging expert j. This study considers three different merg-
ing strategies: average merging, frequency-weighted merging, as well as fixed-dominant merging.
In average merging, αj = 1

|Ci| . In frequency-weighted merging, αj denotes the usage frequency of
expert j. On the other hand, fixed-dominant merging, a methodology introduced in this study, rep-
resents an efficient adaptation of ZipIt specifically developed for merging experts in SMoE models.

In fixed-dominant merging, the expert closest to the cluster center is selected as the dominant expert,
which serves as a reference point. The features of the other experts in the cluster are then re-
ordered based on their correlation with the dominant expert’s features. Subsequently, an averaging
operation is performed between the dominant expert and the re-ordered features of the remaining
experts. This method is specifically tailored for SMoEs, as it preserves the structural characteristics
of the dominant expert while allowing efficient merging. Unlike the original ZipIt algorithm, which
requires exhaustive pairwise comparisons, our adaptation is computationally efficient and ensures
the preservation of key characteristics of the dominant expert, making it highly suitable for the
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SMoE framework. An ablation study for different merging approaches is presented in Section 4.3.
For elaboration on fixed-dominant merging and comparison to ZipIt, please refer to Appendix A.2.

4 EXPERIMENTAL RESULTS

In the following sections, we first describe the experimental setups in Section 4.1. Next, we compare
the performance of HC-SMoE against various SMoE model pruning and merging baselines. Finally,
we present an ablation study to assess the effectiveness of each component in HC-SMoE’s design.

4.1 EXPERIMENTAL SETTINGS

We conduct experiments on two SMoE models: Qwen1.5-MoE-A2.7B (henceforth Qwen) (Team,
2024) and Mixtral 8x7B (Jiang et al., 2024). For Qwen, we explore two levels of reduction: merging
the number of experts from 60 to 45 and further to 30 per layer. This corresponds to a reduction
in parameters from 14.3B to 11.2B (denoted as Qwen 45x2.7B), and subsequently to 8.1B (denoted
as Qwen 30x2.7B). Similarly, Mixtral 8x7B undergoes reduction from eight to six experts and then
to four experts per layer, decreasing the total parameters from 46.7B to 35.6B (denoted as Mixtral
6x7B) and further to 24.3B (denoted as Mixtral 4x7B). This graduated approach enables the evalua-
tion of expert merging impact at different levels of model reduction. Experiments on Mixtral 8x7B
and Qwen are conducted on eight NVIDIA A100 GPUs and four NVIDIA V100 GPUs, respectively.

To evaluate our method in a task-agnostic setting, we utilize eight tasks using the EleutherAI Lan-
guage Model Evaluation Harness (Gao et al., 2024). These are designed to cover various aspects of
language understanding and reasoning, including both Challenge and Easy sets in AI2 Reasoning
Challenge (ARC) (Clark et al., 2018), BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019),
Massive Multitask Language Understanding (MMLU) (Hendrycks et al., 2021), OpenBookQA (Mi-
haylov et al., 2018), Recognizing Textual Entailment (RTE) (Bentivogli et al., 2009) and Winograd
Schema Challenge (Sakaguchi et al., 2021). We report zero-shot accuracy on those benchmarks.

For our comparisons, three pruning baselines are employed: O-prune (Lu et al., 2024), S-prune (He
et al., 2024), and F-prune. F-prune, where ‘F’ denotes frequency, adheres to the same methodology
as S-prune. However, it employs frequency as the criterion for pruning experts, in contrast to S-
prune which utilizes router logits. Due to the high computational complexity of O-prune on Qwen,
a random sampling of 10, 000 possible expert sets in each layer is performed instead. The set with
the smallest output difference from the original model is selected, denoted as O-prune (105) in the
Qwen experiments. In addition, M-SMoE is included as the merging baseline and applied in a task-
agnostic setting without retraining to ensure a fair comparison. All baselines and HC-SMoE require
a calibration dataset to estimate input statistics. This dataset is constructed by sampling from the C4
corpus (Raffel et al., 2020), concatenating extracted text into 32 sequences of 2, 048 tokens each.

4.2 PERFORMANCE COMPARISONS

This section presents a comprehensive comparison of the performance of the models reduced by the
proposed HC-SMoE against the original SMoE models and the baselines. The analysis encompasses
various model sizes and tasks, and provides insights into the efficacy and scalability of the proposed
HC-SmoE method. As presented in Tables 2 and 3, the M-SMoE baseline exhibits the lowest per-
formance across all benchmarks, indicating the ineffectiveness of router-logit-based grouping in a
task-agnostic setting. O-prune demonstrates suboptimal performance, particularly on Qwen, due
to its limitations in evaluating all possible expert combinations. This results in a substantial perfor-
mance decline compared to Mixtral. In contrast, HC-SMoE demonstrates consistent superiority over
these baselines, irrespective of model size, and proves applicable to different number of experts.

It is noteworthy that Qwen 45x2.7B and Mixtral 4x7B achieve comparable scores despite a twofold
difference in parameter count. This observation substantiates the scalability of HC-SMoE to SMoE
models with a higher number of experts. With a 25% reduction in experts, our method even surpasses
the original model on certain tasks, such as Mixtral 6x7B on BoolQ and Qwen 45x2.7B on RTE.
This improvement can be attributed to the reduction of expert redundancy after merging. In this
configuration, both Qwen and Mixtral exhibit an average performance gap of less than 3% compared
to their original models. Even with a 50% reduction, HC-SMoE applied to Qwen maintains a gap of
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Table 2: Zero-shot performance evaluation of different expert pruning and merging methods on
Qwen with reducing experts to 45 and 30 per layer. HC-SMoE (avg) stands for average linkage
method when performing hierarchical clustering. HC-SMoE (single) stands for single linkage.

Model Method ARC-c ARC-e BoolQ HellaSwag MMLU OBQA RTE Winogrande Average

Qwen 60x2.7B None 0.3951 0.7012 0.8135 0.5932 0.6047 0.310 0.7329 0.6559 0.6008

Qwen 45x2.7B

O-prune (105) 0.3268 0.6111 0.7566 0.5388 0.5150 0.268 0.6498 0.6330 0.5374
F-prune 0.3490 0.5989 0.7618 0.5441 0.4560 0.282 0.7690 0.6409 0.5502
S-prune 0.3464 0.6061 0.7128 0.5228 0.4930 0.264 0.6534 0.5935 0.5240
M-SMoE 0.3473 0.6157 0.7544 0.5157 0.4182 0.262 0.7292 0.6377 0.5350
HC-SMoE (avg) 0.3660 0.6578 0.7948 0.5520 0.5332 0.272 0.7509 0.6464 0.5716
HC-SMoE (single) 0.3592 0.6578 0.7942 0.5578 0.5360 0.270 0.7292 0.6472 0.5689

Qwen 30x2.7B

O-prune (105) 0.2568 0.4449 0.6496 0.4351 0.2907 0.202 0.6065 0.5375 0.4279
F-prune 0.2765 0.4718 0.6587 0.4330 0.3023 0.230 0.6570 0.5927 0.4528
S-prune 0.2500 0.4756 0.6388 0.4041 0.3471 0.196 0.6209 0.5146 0.4309
M-SMoE 0.1945 0.2786 0.4462 0.2837 0.2475 0.160 0.4477 0.5185 0.3221
HC-SMoE (avg) 0.3532 0.6149 0.7535 0.4695 0.4534 0.228 0.6606 0.6456 0.5223
HC-SMoE (single) 0.3524 0.6153 0.7661 0.4661 0.4537 0.228 0.6534 0.6306 0.5207

Table 3: Zero-shot performance evaluation of different expert pruning and merging methods on
Mixtral 8x7B with reducing experts to six and four per layer.

Model Method ARC-c ARC-e BoolQ HellaSwag MMLU OBQA RTE Winogrande Average

Mixtral 8x7B None 0.5648 0.8422 0.8505 0.6490 0.6712 0.350 0.7112 0.7593 0.6748

Mixtral 6x7B

O-prune 0.5205 0.8009 0.8352 0.6115 0.5741 0.316 0.6606 0.7719 0.6363
F-prune 0.5009 0.7904 0.7725 0.5990 0.5099 0.326 0.5596 0.7672 0.6032
S-prune 0.4991 0.7891 0.7801 0.5984 0.5103 0.340 0.5704 0.7735 0.6076
M-SMoE 0.2619 0.5564 0.5208 0.4320 0.2503 0.194 0.5271 0.5848 0.4159
HC-SMoE (avg) 0.5145 0.8043 0.8554 0.6142 0.6043 0.324 0.6715 0.7514 0.6425
HC-SMoE (single) 0.5154 0.8123 0.8554 0.6163 0.6053 0.310 0.6715 0.7403 0.6408

Mixtral 4x7B

O-prune 0.4394 0.7327 0.8046 0.5660 0.4584 0.286 0.5668 0.7285 0.5728
F-prune 0.4352 0.7290 0.7520 0.5293 0.3739 0.290 0.5560 0.7245 0.5487
S-prune 0.2235 0.4339 0.6300 0.4250 0.2554 0.188 0.5235 0.5699 0.4062
M-SMoE 0.2116 0.2765 0.4954 0.2767 0.2452 0.108 0.4910 0.4964 0.3251
HC-SMoE (avg) 0.4573 0.7454 0.8018 0.5709 0.4571 0.270 0.5523 0.7285 0.5729
HC-SMoE (single) 0.4642 0.7483 0.8321 0.5781 0.4895 0.280 0.5884 0.7206 0.5877

merely 7.43% and outperforms the best baseline, F-prune, which lags behind HC-SMoE by 7.46%.
These results validate the robustness and efficacy of HC-SMoE across diverse model sizes and tasks.

4.3 ABLATION STUDY

Ablation on Different Linkage Methods among Different Metrics. Table 4 presents a comparison
of different linkage methods in hierarchical clustering according to various metrics: router-logits,
weight, and expert-output. Hierarchical clustering exhibits stability due to its deterministic nature.
This stability is evidenced by consistent performance across benchmarks and the highest average
scores. Unlike K-means, it is not susceptible to initialization randomness, which establishes it as
a more reliable clustering method. Among the different linkage methods, single linkage generally
performs satisfactorily. However, average linkage emerges as the superior option and achieves the
highest scores in most of the evaluated settings. The experimental results further reveal an interest-
ing pattern in the performance of complete linkage across different metrics. When applied with the
expert-output metric, complete linkage yields suboptimal results, achieving only 0.3909 on average.
The performance further deteriorates with the weight metric, which reaches a mere 0.3682. On the
contrary, the router-logits-based approach excels exclusively with complete linkage, and attains an
average score of 0.5295. This disparity substantiates the distinctive properties of router-logits com-
pared to weights and expert outputs. This observation can be attributed to the inherent characteristics
of the similarity metrics. Router-logits align well with complete linkage since they capture the max-
imal boundaries between clusters. This alignment effectively reflects distinct activation patterns. In
contrast, expert outputs and weights benefit from single or average linkage methods. These metrics
reveal more subtle, internal similarities that may not manifest through extreme distances. Therefore,
they favor linkage methods that consider average or minimal distances between cluster elements.
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Table 4: Different linkage method comparisons of hierarchical clustering on Qwen 45x2.7B.

Linkage Metric ARC-c BoolQ OBQA RTE Average

None None 0.3951 0.8135 0.310 0.7329 0.5629

Single
router-logits 0.2398 0.3792 0.180 0.5054 0.3261
weight 0.3695 0.7676 0.254 0.7004 0.5229
expert-output 0.3592 0.7942 0.270 0.7292 0.5382

Complete
router-logits 0.3677 0.7694 0.248 0.7329 0.5295
weight 0.2363 0.4446 0.178 0.6137 0.3682
expert-output 0.2338 0.6037 0.210 0.5162 0.3909

Average
router-logits 0.2073 0.3801 0.172 0.5018 0.3153
weight 0.3788 0.7645 0.250 0.7004 0.5234
expert-output 0.3660 0.7948 0.272 0.7509 0.5459

Table 5: Our HC-SMoE compares to K-means clustering. K-means-fix assigns the first r experts as
initial center. K-means-rnd randomly choose r experts as initial center. For each task, we highlight
the best performance in yellow , and mark the best performance within same cluster method bold.

Model Cluster Metric ARC-c BoolQ OBQA RTE Average

Qwen 60x2.7B None None 0.3951 0.8135 0.310 0.7329 0.5629

Qwen 45x2.7B

K-means-fix
router-logits 0.3669 0.7664 0.270 0.6679 0.5178
weight 0.3797 0.7294 0.268 0.6751 0.5131
expert-output 0.3925 0.7850 0.270 0.7184 0.5415

K-means-rnd
router-logits 0.3797 0.7621 0.276 0.6029 0.5052
weight 0.2432 0.5557 0.154 0.5812 0.3835
expert-output 0.3797 0.7177 0.270 0.6968 0.5161

HC-SMoE expert-output 0.3646 0.7927 0.268 0.7449 0.5426

Qwen 30x2.7B

K-means-fix
router-logits 0.2031 0.4015 0.162 0.4838 0.3126
weight 0.2073 0.4960 0.166 0.509 0.3446
expert-output 0.2184 0.3786 0.148 0.5343 0.3198

K-means-rnd
router-logits 0.2014 0.4168 0.142 0.5018 0.3155
weight 0.2108 0.533 0.174 0.5379 0.3639
expert-output 0.3370 0.6398 0.224 0.6065 0.4518

HC-SMoE expert-output 0.3515 0.7544 0.228 0.6631 0.4993

K-means Clustering v.s. Hierarchical Clustering. We next present a comparative analysis be-
tween our hierarchical clustering (HC) method and various K-means clustering strategies, under-
scoring the superiority of HC. Table 5 reports the performance of different initialization strategies
and similarity metrics in K-means, evaluated across four benchmarks: ARC-c, BoolQ, OBQA, and
RTE. These benchmarks were selected for their comprehensive coverage of language abilities, en-
compassing common sense reasoning, basic knowledge questions, and semantic similarity between
sentence pairs. The evaluation results reveal that most post-merged models utilizing K-means ex-
perience a substantial decline in their original capabilities. For instance, even the best-performing
model employing the expert-output similarity metric achieves a score 4.75% lower than our HC-
SMoE results. This performance gap validates the effectiveness of our proposed HC-based method.

K-means also exhibits significant instability, particularly when juxtaposed with HC. The final per-
formance of K-means demonstrates high sensitivity to the choice of initial cluster centers. In ex-
periments conducted on the Qwen45x2.7B model using the weight similarity metric, we observe
a substantial average accuracy reduction of 12.96% when transitioning from a fixed to a random
initialization strategy. This sensitivity illuminates K-means’ inherent randomness and lack of ro-
bustness. The observed instability and performance degradation in K-means clustering further ac-
centuate the stability and efficacy of our HC-based method. These findings reinforce the superiority
of HC in maintaining model performance post-merging and its resilience to initialization variability.

Single-shot Grouping v.s. Hierarchical Clustering. In this analysis, we follow the single-shot
grouping methods outlined in Li et al. (2024) to compare results on Mixtral 8x7B, and report the
results in Table 6. Among the similarity metrics evaluated, router-logits exhibits the poorest perfor-
mance, indicating its unsuitability for task-agnostic settings due to its reliance on dataset-specific
statistics. In both the 25% and 50% parameter reduction scenarios, all one-shot grouping meth-
ods underperform compared to O-prune presented in Table 3. This observation suggests that these
grouping methods fail to form effective clusters, and can potentially result in lower performance
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Table 6: Comparisons for different similarity metric to single-shot grouping method and our HC-
SMoE on Mixtral 8x7B with reducing experts to average 6 and 4 per layer.

Model Metric ARC-c ARC-e BoolQ HellaSwag MMLU OBQA RTE Winogrande Average

Mixtral 8x7B None 0.5648 0.8422 0.8505 0.6490 0.6712 0.350 0.7112 0.7593 0.6748

Mixtral 6x7B

router-logits 0.2619 0.5564 0.5208 0.432 0.2503 0.194 0.5271 0.5848 0.4159
weight 0.4974 0.7955 0.781 0.6131 0.5244 0.34 0.6715 0.7585 0.6227
expert-output 0.506 0.8056 0.8373 0.613 0.5595 0.306 0.6318 0.7474 0.6258
HC-SMoE 0.5145 0.8043 0.8554 0.6142 0.6043 0.324 0.6715 0.7514 0.6425

Mixtral 4x7B

router-logits 0.2116 0.2765 0.4954 0.2767 0.2452 0.108 0.4910 0.4964 0.3251
weight 0.4172 0.7382 0.7862 0.5457 0.4223 0.256 0.5523 0.7143 0.554
expert-output 0.4326 0.7386 0.8021 0.5467 0.429 0.278 0.5704 0.7245 0.5652
HC-SMoE 0.4573 0.7454 0.8018 0.5709 0.4571 0.270 0.5523 0.7285 0.5729

Table 7: Various merging methods with hierarchical clustering average linkage based on expert
outputs. Fix-Dom represents fixed-dominant merging described in Section 3.2.3. Avg in the Merge
column denotes the average score among all the merging strategy under same model settings.

Model Merge ARC-c ARC-e BoolQ HellaSwag MMLU OBQA RTE Winogrande Average

Qwen 60x2.7B None 0.3951 0.7012 0.8135 0.5932 0.6047 0.310 0.7329 0.6559 0.6008

Qwen 45x2.7B

Frequency 0.3660 0.6578 0.7948 0.5520 0.5332 0.272 0.7509 0.6464 0.5716
Average 0.3584 0.6553 0.7936 0.5516 0.5348 0.270 0.7473 0.6559 0.5709
Fix-Dom 0.3695 0.6692 0.7896 0.5555 0.5338 0.262 0.7365 0.6535 0.5712
Avg 0.3646 0.6608 0.7927 0.5530 0.5339 0.268 0.7449 0.6519 0.5712

Qwen 30x2.7B

Frequency 0.3532 0.6149 0.7535 0.4695 0.4534 0.228 0.6606 0.6456 0.5223
Average 0.3575 0.6145 0.7554 0.4706 0.4531 0.228 0.6643 0.6488 0.5240
Fix-Dom 0.3439 0.6132 0.7544 0.4679 0.4445 0.228 0.6643 0.6504 0.5208
Avg 0.3515 0.6142 0.7544 0.4693 0.4503 0.228 0.6631 0.6483 0.5224

even when attempting to absorb all expert knowledge. The method based on the expert output met-
ric demonstrates superior performance over other similarity metrics. It outperforms router-logits by
24.01% and weights by 1.12% when reducing 50% of the expert parameters. This finding highlights
the importance of selecting appropriate similarity metrics for effective expert grouping. HC-SMoE
demonstrates a clear advantage over the one-shot grouping approaches. It achieves average improve-
ments of 1.98% and 1.67% in the 25% and 50% parameter reduction settings, respectively.

Ablation on Different Merging Methods. Table 7 presents the results of hierarchical clustering
with three merging strategies: frequency, average, and fixed-dominant merging. For Qwen30x2.7B,
the average merging method demonstrates superior performance. It exceeds frequency merging by
0.17% and marginally enhances overall performance. This outcome substantiates our assertion that
once a high-quality cluster is identified, the specific merging method becomes modestly influential
on the final performance. The rationale behind this phenomenon lies in the functional similarity
exhibited by experts within the same group, as evidenced by their similar outputs. Thus, the model
maintains robust performance irrespective of the merging strategy employed. It is noteworthy that all
three merging methods outperform the four baselines in Table 2. This observation further substanti-
ates the effectiveness of HC-SMoE in preserving model performance during the merging process.

5 CONCLUSION

In this paper, we presented HC-SMoE, a retraining-free, task-agnostic, and scalable expert merging
framework that employed hierarchical clustering to reduce the parameters of SMoE models. By
employing on expert outputs as the similarity metric and leveraging hierarchical clustering, HC-
SMoE effectively captured functional similarities between experts, surpassing previous merging and
pruning methods. Our comprehensive evaluation on two representative large-scale models, Qwen
and Mixtral, demonstrated that HC-SMoE retained the models’ general language abilities even when
significantly reducing the number of experts. The experimental results also validated the robustness
and scalability of our approach. HC-SMoE achieved notable improvements over existing baselines.
This work not only provided a practical solution for optimizing SMoE models but also opened up a
broader domain for further research on task-agnostic model compression strategies for SMoE.
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A EXPLORATORY EXPERIMENTS

All the experiments code is released at https://anonymous.4open.science/r/
TAMP-11E2.

A.1 NON-UNIFORM HIERARCHICAL CLUSTERING

In our main experiments, the number of clusters in each layer is fixed and uniform due to model
design choices. Here, we explore a more flexible approach that allows different numbers of clusters
in each layer while maintaining an overall 25% or 50% reduction of experts. To determine the cluster
count per layer, we first select the top r% most frequently activated experts based on their activation
frequencies across layers. We then count the number of these experts that remain in each layer to
guide the selection of clusters in that layer, followed by hierarchical clustering.

For example, in the uniform clustering setting for Qwen with a 25% reduction, the distribution
will be [45, 45, 45, 45, ..., 45] across all layers. In contrast, the non-uniform setting might result in
a distribution like [48, 45, 40, 42, 50, ...], as long as the overall number of clusters aligns with the
target reduction. Table 8 presents the results of this non-uniform clustering strategy.

A.2 FIXED-DOMINANT MERGING

The fixed-dominant (Fix-Dom) merging approach modifies the traditional ZipIt (Stoica et al., 2024)
feature similarity calculation. Rather than concatenating features from all experts and computing
pairwise correlations, we fix the feature order of a designated dominant expert as a reference point.
Correlations are then computed between this fixed order and the features of other experts, as shown
in Figure 3. Features from secondary experts are grouped with their most correlated counterparts
in the dominant expert. The merging process then applies an appropriate weighting scheme, such
as average merging, preserving the dominant expert’s weight feature order while simplifying the
merging process.

Feature similarity is defined as the pairwise correlation between these output features, using formu-
las adapted from (Li et al., 2016). In the original ZipIt model merging, output features are taken
after each linear layer. However, since we aim to merge entire experts, each containing three linear
layers, we use the intermediate activation features, which is the activations after the non-linear func-
tion and before feeding into Wdown: act = (xWgate)⊙ xWup to compute similarity. This approach
considers expert similarity from an activation perspective, but we can also use the experts’ weights
as the ”feature” for correlation or even combine both activation and weight features.

The Fix-Dom merging technique has two main advantages: it preserves the structural integrity of
the dominant expert’s feature arrangement and accelerates the merging process compared to the
original ZipIt method. Instead of iteratively selecting and merging highly correlated features until
the target dimension is reached, fix-dom merge performs a more efficient grouping. For example,
in Mixtral8x4B, ZipIt takes approximately 725 minutes, while Fix-Dom merge completes in just 7
minutes, making it over 100 times faster. For performance comparisons between ZipIt and fix-dom
merge using various feature selections (activation, weight, and activation + weight), refer to Table 9.

Table 8: The comparison between ZipIt and Fix-Dom merging for reducing 25% experts of Qwen
under the same expert clustering groups.

Linkage Metric Merge ARC-c ARC-e BoolQ HellaSwag MMLU OBQA RTE Winogrande Average

Single
weight Freq 0.2108 0.3493 0.5086 0.4536 0.2296 0.170 0.5596 0.5801 0.3827

Fix-Dom 0.2133 0.3531 0.4847 0.4588 0.2303 0.168 0.6101 0.5714 0.3862

expert-output Freq 0.3686 0.6604 0.7960 0.5587 0.5290 0.254 0.7401 0.6543 0.5701
Fix-Dom 0.3660 0.6612 0.7917 0.5564 0.5302 0.262 0.7292 0.6527 0.5687

Average
weight Freq 0.2125 0.3535 0.5024 0.4543 0.2287 0.174 0.5560 0.5785 0.3825

Fix-Dom 0.2116 0.3497 0.4951 0.4565 0.2327 0.164 0.5921 0.5738 0.3844

expert-output Freq 0.3575 0.6561 0.7933 0.5538 0.5319 0.272 0.7365 0.6551 0.5695
Fix-Dom 0.3558 0.6582 0.7917 0.5558 0.5306 0.270 0.7256 0.6559 0.5680
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Figure 3: Fixed-Dominant Merging. Given a group of experts, the dominant expert’s feature order is
fixed. The feature correlations with other non-dominant experts are calculated to align their features
with those of the dominant expert. The merging process then combines these aligned features to
form the final merged expert.

Table 9: The comparison between ZipIt and Fix-Dom merging for reducing Mixtral 8x7B to Mixtral
4x7B under the same expert clustering groups.

Feature Merge ARC-c ARC-e BoolQ HellaSwag MMLU OBQA RTE Winogrande Average

act zipit 0.3959 0.6978 0.7352 0.5350 0.4256 0.252 0.5776 0.7080 0.5409
Fix-Dom 0.4036 0.6873 0.7951 0.5351 0.4471 0.278 0.6462 0.7174 0.5637

weight zipit 0.3959 0.7062 0.7976 0.5376 0.4318 0.266 0.5848 0.6993 0.5524
Fix-Dom 0.4334 0.7290 0.8009 0.5608 0.4913 0.280 0.5596 0.7253 0.5725

act+weight zipit 0.4078 0.7146 0.8125 0.5389 0.4364 0.270 0.5921 0.7009 0.5592
Fix-Dom 0.4283 0.7184 0.7774 0.5501 0.4737 0.264 0.5921 0.7388 0.5679

B EFFICIENCY DISCUSSION

We evaluate computational and memory costs on the Mixtral 8x7B and Qwen1.5-MoE-A2.7B-Chat
models in both their original and merged versions. All experiments use the same calibration dataset
as the main experiments and consist of 32 sequences of 2048 tokens sampled from the C4 cor-
pus (Raffel et al., 2020). The results in Table 10 show that a reduction in the number of experts leads
to significant decreases in memory usage and GLOPs without impact on throughput and latency.
The ideal benefits of reduced router latency from fewer output channels are not realized since we
retain the original router weights to prevent accuracy degradation. As a result, the router functions
as if the original number of experts exists, with experts within the same group producing identical
outputs through their corresponding merged experts.

C FREQUENCY ANALYSIS

C.1 MIXTRAL 8X7B

We present the activation frequency analysis of all experts in Mixtral 8x7B (Jiang et al., 2024)
using our sampling dataset from C4 (Raffel et al., 2020) and eight language benchmarks. The
results provide evidence against using frequency as the sole criterion for determining the number of
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Table 10: Evaluation of computational and memory efficiency across multiple models. For Mix-
tral: Mixtral 8x7B (original), Mixtral 6x7B (25% pruned), and Mixtral 4x7B (50% pruned). For
Qwen1.5-MoE-A2.7B-Chat: Qwen 60x2.7B (original), Qwen 45x2.7B (25% pruned), and Qwen
30x2.7B (50% pruned). All measurements use identical input sequences and include throughput
(tokens per ms), latency (s), GFLOPs, model memory, and model size (number of parameters).

Models Throughput Latency GFLOPs Memory Model Size
Mixtral 8x7B 13.45 ± 1.30 2.854 ± 0.333 2989 87.49GB 46.7B
Mixtral 6x7B 13.87 ± 0.47 2.666 ± 0.093 2267 66.49GB 35.4B
Mixtral 4x7B 13.96 ± 0.65 2.599 ± 0.166 1546 45.49GB 24.2B

Qwen 60x2.7B 24.08 ± 0.17 1.593 ± 0.168 916 27.04GB 14.3B
Qwen 45x2.7B 23.95 ± 0.24 1.541 ± 0.011 717 21.23GB 11.2B
Qwen 30x2.7B 23.16 ± 0.42 1.583 ± 0.034 518 15.44GB 8.1B

Figure 4: The frequency anslysis of Mixtral 8x7B on ARC-c and our sampling dataset of C4.

experts in each layer. The analysis reveals variability in activation frequency across different tasks,
highlighting the fact that this metric is not a consistent or reliable indicator for expert selection in
task-agnostic settings.

C.2 TINYLLAMA-4X1.1B-MOE

The activation frequency analysis of all experts in TinyLLaMa-4x1.1B-MoE 1 on our sampling
dataset of C4 (Raffel et al., 2020) and eight language benchmarks. It can be the evidence of poor
expert utilization in SMoE, since one of the experts is seldom chosen among all tasks.

1https://huggingface.co/s3nh/TinyLLama-4x1.1B-MoE
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Figure 5: The frequency anslysis of Mixtral 8x7B on ARC-c and ARC-e.

Figure 6: The frequency anslysis of Mixtral 8x7B on BoolQ and Winogrande.
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Figure 7: The frequency anslysis of Mixtral 8x7B on MMLU and HellaSwag.

Figure 8: The frequency anslysis of Mixtral 8x7B on RTE and OpenBookQA.
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